Complete Genome Sequence of Magnetospirillum gryphiswaldense MSR-1
نویسندگان
چکیده
We report the complete genomic sequence of Magnetospirillum gryphiswaldense MSR-1 (DSM 6361), a type strain of the genus Magnetospirillum belonging to the Alphaproteobacteria. Compared to the reported draft sequence, extensive rearrangements and differences were found, indicating high genomic flexibility and "domestication" by accelerated evolution of the strain upon repeated passaging.
منابع مشابه
Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function.
Magnetotactic bacteria (MTB) are a heterogeneous group of aquatic prokaryotes with a unique intracellular organelle, the magnetosome, which orients the cell along magnetic field lines. Magnetotaxis is a complex phenotype, which depends on the coordinate synthesis of magnetosomes and the ability to swim and orient along the direction caused by the interaction with the Earth's magnetic field. Alt...
متن کاملEffects of Environmental Conditions on High-Yield Magnetosome Production by Magnetospirillum gryphiswaldense MSR-1
Background: Magnetotactic bacteria are a heterogeneous group of Gram-negative prokaryote cells that produce linear chains of magnetic particles called magnetosomes, intracellular organelles composed of magnetic iron particles. Many important applications have been defined for magnetic nanoparticles in biotechnology, such as cell separation applications and acting as carriers of enzymes, antib...
متن کاملFur in Magnetospirillum gryphiswaldense Influences Magnetosomes Formation and Directly Regulates the Genes Involved in Iron and Oxygen Metabolism
Magnetospirillum gryphiswaldense strain MSR-1 has the unique capability of taking up large amounts of iron and synthesizing magnetosomes (intracellular magnetic particles composed of Fe(3)O(4)). The unusual high iron content of MSR-1 makes it a useful model for studying biological mechanisms of iron uptake and homeostasis. The ferric uptake regulator (Fur) protein plays a key role in maintainin...
متن کاملMagnetosomes and magnetite crystals produced by magnetotactic bacteria as resolved by atomic force microscopy and transmission electron microscopy.
Atomic force microscopy (AFM) was used in concert with transmission electron microscopy (TEM) to image magnetotactic bacteria (Magnetospirillum gryphiswaldense MSR-1 and Magnetospirillum magneticum AMB-1), magnetosomes, and purified Mms6 proteins. Mms6 is a protein that is associated with magnetosomes in M. magneticum AMB-1 and is believed to control the synthesis of magnetite (Fe(3)O(4)) withi...
متن کاملFeoB2 Functions in magnetosome formation and oxidative stress protection in Magnetospirillum gryphiswaldense strain MSR-1.
Magnetotactic bacteria (MTB) synthesize unique organelles, the magnetosomes, which are intracellular nanometer-sized, membrane-enveloped magnetite. The biomineralization of magnetosomes involves the uptake of large amounts of iron. However, the iron metabolism of MTB is not well understood. The genome of the magnetotactic bacterium Magnetospirillum gryphiswaldense strain MSR-1 contains two ferr...
متن کامل